تمارين الهندسة الفضائية 3 ()

التمرين O1: ABCDEFGH مكعب ضلعه

$$\overrightarrow{AB} \bullet \overrightarrow{FG}$$
 $\overrightarrow{AB} \bullet \overrightarrow{CD}$ $\overrightarrow{AB} \bullet \overrightarrow{AC}$ -1
$$. \overrightarrow{DB} \bullet \overrightarrow{HF} \overrightarrow{DB} \bullet \overrightarrow{AC}$$

- (AG) أثبت ان المستقيم (BED).
- عين . $(D:\overrightarrow{DA}:\overrightarrow{DC}:\overrightarrow{DH})$ -3 . D,E,B,G,A احداثیات النقط
 - (AG) اثبت مجددا ان المستقيم -4 (BED) بطريقة ثانية.

التمرين 02:

$$B(1;2;-1)$$
 $A(-1;1;1)$ $.(o;\vec{i};\vec{j};\vec{k})$ $.C(-2;0;0)$

1- بين
$$A,B,C$$
 تعين مستوي.

$$(ABC)$$
 $\overrightarrow{n}(a;b;c)$ عين -2

- 3- استنتج معادلة ديكارتية للمستوي (ABC).
 - (ABC) عين تمثيل وسيطي للمستوي (ABC).

التمرين 03:

$$B(3;-1;2)$$
 $A(1;0;-1)$ $.(o;\vec{i};\vec{j};\vec{k})$ $.C(2;-2;-1)$

- 1- بين أن النقط A,B,C تعين مستوي.
 - \overrightarrow{n} (2;1;-1) بين -2 . (ABC)
- (ABC) استنتج معادلة ديكارتية للمستوي
 - $D\left(1;2;3\right)$ احسب المسافة بين النقطة -4 (ABC)

التمرين 04:

 $.(o;\vec{i};\vec{j};\vec{k})$

- 1- اعط تمثیلا و سیطیا للمستقیم (AB) حیث . B(2;1;0) A(0;-1;1)
- و. هُل النقطُة $E\left(0;-1;2\right)$ تنتمي الى المستقيم (AB)
- (AB) غين احداثيي نقطتين من المستقيم (AB) غير A,B
 - (AB) اوجد جملة المعادلتين للمستقيم

$$(AB)$$
 المعرف بين المستقيم (Δ) المعرف المستقيم (Δ) المعرف المستقيم (Δ) المعرف $x=-t+1$ $y=t-1$ $z=-t$

التمرين 05:

$$A\left(-1;0;1\right) \qquad .\left(o;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}\right)$$

$$.C\left(1;-1;0\right) \quad B\left(2;1;0\right)$$

- بين أن النقط A,B,C تعين 1-
- 2- بين ان : 2x y + 5z 3 = 0 هي معادلة ديكارتية للمستوي (ABC) .
- $D\left(2;-1;3
 ight)$: حيث H,D -3 . $H\left(\frac{12}{15};-\frac{13}{30};\frac{1}{6}\right)$
 - D . (ABC)
- بين ان النقطة H هي المسقط العمودي للنقطة D

التمرين 06:

$$.(o;\vec{i};\vec{j};\vec{k})$$

مستقيم المعرف بتمثيله الوسيطي (Δ)

$$A\left(0;1;3\right)$$
 وليكن $t\in\mathbb{R}$
$$\begin{cases} x=-1+t\\ y=t+1\\ z=2 \end{cases}$$

- (Δ) بين ان النقطة A لا تنتمي الى المستقيم
- المستوي الذي يشمل النقطة A و يعامد (p) -2 المستقيم (Δ) .
 - (p) . (Δ) عين احداذيي نقطة تفاطع المستقيم

التمرين 07:

الذي معادلته
$$(p)$$
 . $(o;\vec{i};\vec{j};\vec{k})$. $(o;\vec{i};\vec{j};\vec{k})$ مستقیم تمثیله الوسیطی $-4x-3y+1=0$

 $\cdot(p)$

التمرين 10:

D(-3;4;4) . $O(\vec{J},\vec{J},\vec{k})$. D(-3;4;4) . D(-3;4) . D(-3;4;4) . D(-3;4)

أ - بين أن النفط A ، B ، A تعين مستويا.

 π - نطق أن الشعاع $\pi(3;-2;1)$ نظمي للمستوي $\pi(ABC)$ ، ثم الكتب معادلة ديكارتية له.

أ - اكتب معادلة ديكارتية المستوي (9)، ثمّ بين أنّ المستوبين (ABC) و (9) متعامدان.

 $\begin{cases} x=-2+t \\ y=-7+4t; t\in \mathbb{R} \end{cases}$ يون لن تقاطع (ABC) و (θ) هو المستقيم (Δ) تو التعشيل الوسيطيي: z=-7+5t

ABC)، والمسافة بين النقطة D والمستوي (ABC)، والمسافة بين النقطة D والمستوي (9)، ثم استنتج المسافة بين النقطة D والمستوي (Δ) .

(a) المستوي الذي يشمل النقطة D والعمودي على كل من المستويين (ABC) و (9).
 أ - اكتب معادلة ديكارتية المستوي (@).

ب بين أن المسئوبات الثلاثة (ABC) ، (٩) و (٥) تتقاطع في نقطة واحده H ، ثة عن إحداثيات H

ج- احسب بطريقة ثانية، المسافة بين النقطة D والمستقيم (۵).

التمرين 11::

 $A\left(3;2;6\right)$. $\left(o;\vec{i};\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$. $\left(a;\vec{j};\vec{k}\right)$

1- بين أن النقط A,B,C تعين مستوي تم تحقق هذا المستوي هو (P) .

-2

-3

. *ABC* - بين

- $|\Delta \hat{\Gamma}|$ - |

. (1)

о *Н* -. ОН .(Р)

. OABC -

 $. \{(O;3),(A;1),(B;1),(C;1)\}$

نحقق ان الجملة المثقلة تقبل مرجح و ليكن - G

ABC I - G تنتمي الى المستقيم G

G - Lamp Lamber Lamber G . (P)

- عين مجموعة النقط M

 $\|3\overrightarrow{OM} + \overrightarrow{AM} + \overrightarrow{BM} + \overrightarrow{CM}\| = 2015$

 $.t \in \mathbb{R} \quad \begin{cases} x = k \\ y = \frac{1}{3} - \frac{4}{3}k \\ z = -\frac{3}{4} + \frac{3}{4}k \end{cases}$

(p) (d) مستقيم (1 - تحقق ان المستقيم -2

- أكتب تمثيلا وسيطيا للمستقيم (Δ) يشمل النقطة (1;1;0) A توجيه له.

- بين ان 0 = 3x - 4z - 3 = 0 هي معادلة ديكارتية للمستوي (Q) الذي يحوي المستقيمين (Δ) . ثم عين احداثيي نقطة تقاطع المستقيمين.

التمرين 08:

. $\left(O; \vec{t}_{\cdot}, \vec{j}_{\cdot}, \vec{k}_{\cdot}\right)$ with all the large large of the large large

المستوي الذي يشمل النقطة (2;-5;2) 4. و (-2;1;5) شعاع ناظمي له. (P) المستوي الذي: (Q) المستوي الذي: (Q)

-1 عين معادلة ديكارئية للمستوي (P).

بین آن المستویین (P) و (Q) متعامدان.

(Q) عيّن تمثيلا وسيطيا للمستقيم (Δ) ، تقاطع المستويين (P) و

احسب d_1 المسافة بين النقطة K(3;3;3) والمستوي d_1 و المسافة d_1 المسافة d_2

 (Δ) استنتج (Δ) المسافة بين النقطة (Δ)

5− احسب المسافة d بطريقة ثانية.

التمرين 09:

نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس $\left(O, I, j, k\right)$ النقط:

. 2y+z+1=0 نا المعانفة: (P) نا المعانفة: D(2;0;-1) ، C(2;-1;1) ، B(1;0;-1) ، A(-1;1;3)

$$x=-1$$
 المستقيم الذي تعثيل ومبطى له: $y=2+\beta$ حيث β وسيط حقيقى. $z=1-2\beta$

(P) كتب تعثيلا رسيطها المستقيم (BC)، ثم تحقق أن المستقيم (BC) محقوى في المستوي ((BC)

 Δ) بين أن المستقيمين (Δ) و (BC) ليسا من نفس المستوي.

A (P) الحسب المسافة بين النقطة A و المستوي (A

ب) بين أن D نقطة من (P)، و أن المشك BCD قائم.

4) بين أن ABCD رباعي وجوده ثمّ لحب حجمه.